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A not trivial problem for every experimental time series associated to a natural system is to individuate the
significant variables to describe the dynamics, i.e., the effective degrees of freedom. The application of inde-
pendent component analysis �ICA� has provided interesting results in this direction, e.g., in the seismological
and atmospheric field. Since all natural phenomena can be represented by dynamical systems, our aim is to
check the performance of ICA in this general context to avoid ambiguities when investigating an unknown
experimental system. We show many examples, representing linear, nonlinear, and stochastic processes, in
which ICA seems to be an efficacious preanalysis able to give information about the complexity of the
dynamics.
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I. INTRODUCTION

Very general, natural systems can be considered dynami-
cal systems, whose evolution can be studied looking at time
series associated to significant variables on a suitable scale.
These series are often characterized by a strong spatial co-
herence. Independent component analysis �ICA� seems to be
the suitable technique able to study their level of complexity
�1�. Namely, we have applied ICA in seismological and at-
mospheric context, getting information about the complexity
of the dynamical systems involved in the effective dynamics
�2–5�. Our goal is now to check the performance of ICA in
an abstract context to avoid ambiguities, as much as possible,
when investigating an unknown experimental system. This
paper is the first effort along this line.

We consider dynamical systems �DSs� associated to se-
quences of observations �measurements� made in the course
of the time, but we remark that the scheme of DSs is very
general, namely sequences can be generated by every type of
phenomena. For example, we can consider the series pro-
duced by a computer via a given calculus device or the al-
phabetical words in a text and so on. We can associate, in a
natural way, the concepts of complexity, statistics, and ergod-
icity to sequences in order to quantitatively distinguish them.
In this context, the theoretical scheme of dynamical systems
becomes the unifying theory. There are many tools giving
powerful methods to study asymptotic properties, but these
methods require analytical solutions, i.e., infinite sequences.
In the real experimental cases, we have to extract all the

properties considering finite series. Hence numerical analysis
arises to understand all important parts of information avail-
able and included in the analyzed sequences.

In the cases when the same signal contains information
relative to different DSs or to the many degrees of freedom
of the underlying dynamical system, if the systems are lin-
early coupled or the degrees of freedom are uncoupled, we
should recognize them as independent components in the
experimental signals. There are many numerical methods
used for this aim �see, e.g., �6��. But ICA could constitute a
pregnant preanalysis.

We select different DSs representative of large classes:
linear, piecewise linear, and nonlinear in the regime of limit
cycle, chaotic, and stochastic and we study the ICA perfor-
mance. In Sec. II, we summarize the main features of ICA,
while in Sec. III we describe the DSs and the corresponding
experiments for linear, piecewise linear, nonlinear, and sto-
chastic systems. Finally, conclusions follow.

II. INDEPENDENT COMPONENT ANALYSIS

ICA is a method to find underlying factors or components
from multivariate �multidimensional� statistical data, based
on their statistical independence. ICA was introduced in the
early 1980s by Hérault and Ans �7� and developed for prob-
lems closely related to the cocktail party problem. Several
different implementations of ICA can be found in literature
but the algorithm, which has contributed to the application of
ICA to large scale problems for its easy implementation and
mainly for its computational efficiency, was introduced by
Hyvärinen and Oja, i.e., the fixed-point FastICA algorithm
�8�. Since then, ICA has revealed many interesting applica-
tions in different fields of research �biomedical signals, geo-
physics, audio signals, image processing, financial data, etc.�.

In its simplest form, ICA performs a blind separation of
statistically independent sources, assuming linear mixing of
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the sources at the sensors. The intuitive notion of maximum
non-Gaussianity is used in ICA estimation adopting tech-
niques which involve higher-order statistics. We remind that
classical measures of non-Gaussianity are the kurtosis, the
negentropy, and the mutual information.

We assume an instantaneous mixing model, thus we ne-
glect any time delay that may occur in the mixing. Formally,
the mixing model is written as

x = As + n �1�

where x is an observed m-dimensional vector, s is an
n-dimensional random vector whose components are as-

sumed to be mutually independent; A is a constant m�n
matrix to be estimated, and n is the additive noise. The ad-
ditive noise term n is often omitted in Eq. �1� because it can
be incorporated in the sum as one of the source signals. In
addition to the independent assumption, we assume that the
number of available different mixtures m is at least as large
as the number of sources n. Usually, m is assumed to be
known in advance, and often m=n �there exists a probabilis-
tic version of ICA that allows one to bypass this limit �9��.
Only one of the source signals si is allowed to have a Gauss-
ian distribution because it is impossible to separate two or
more Gaussian sources �10,11�. On the extract components
by using ICA there are the following ambiguities.

FIG. 1. Separation of a mixture of two harmonic oscillators and Gaussian noise: �a� the source signals �corresponding to the two linear
oscillators and noise�; �b� mixed signals; �c� extracted signals via ICA; and �d� performance of ICA in extracting periodic signals from noise,
varying the signal-to-noise ratio �SNR� from −100 to 20 db. The frequency error measures the difference between the true frequency and the
estimated one computing PSD. It is remarkable that the mere application of PSD on the mixtures fails at SNR equal to −10 db, while ICA
allows the extraction of the periodic signals from noise with SNR equal to −40 db.
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�1� We cannot determine the variances of the independent
components. Very little, a priori, information is assumed on
matrix A, therefore, the magnitudes of the basis vectors of
the matrix A and the amplitudes of the source signals can be
interchanged in Eq. �1�. To get a unique expansion, the most
natural way is to assume that each source has unit variance.
Then the matrix A will be adapted in the ICA solution meth-
ods to take into account this restriction. This still leaves the
ambiguity of the sign.

�2� We cannot determine the order of the independent
components. In adaptive source separation an m�n separat-
ing matrix B is updated so that the vector

y = Bx �2�

is an estimate y�s of the original independent source
signals.

Some heuristic approaches have been proposed in litera-
ture to achieve the separation. Among them, a good measure
of independence is given by negentropy J. It is based on the
information-theoretic quantity of differential entropy H of a
random vector y with density f�·� and it is defined as follows:

J�z� = H�zgauss� − H�z� �3�

where z is a random variable and zgauss is a Gaussian random
variable of the same covariance matrix as z. The estimate of
negentropy is difficult and, in practice, some approximations
must to be introduced. In the following we shall use the
fixed-point algorithm, namely FastICA �1�. Rigorously, this
algorithm is based on an approximative Newton iteration
scheme. The FastICA learning rule finds a direction, i.e., a
unit vector w such that the projection wTx maximizes inde-

FIG. 2. Separation of the mixture of two coupled harmonic oscillators in beat regime and Gaussian noise �related spectra are on the right�:
�a� source signals; �b� mixed signals; �c� extracted signals; �d� distribution function and autocorrelation of source and extracted noise.
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pendence of the single estimated source y. Independence is
here measured by the approximation of the negentropy given
by

JG�w� = �E�G�wTx�� − E�G�����2, �4�

where G is a suitable contrast nonquadratic function, w is a
m-dimensional �weight� vector, x represent our mixture of
signals, and E��wTx�2�=1, � is a standardized Gaussian ran-
dom variable. Maximizing JG allows one to find one inde-
pendent component. We remark that the algorithm requires a
preliminary whitening of the data �let us define v�. Whiten-
ing can always be accomplished by, e.g., principal compo-
nent analysis �1�.

The one-unit fixed-point algorithm for finding a row vec-
tor w is �1�

w* = E�vg�wi
Tv�� − E�g��wi

Tv��wi,

wi = wi
*/�wi

*� , �5�

where g�·� is a suitable nonlinearity, in our case g�y�
=tanh�y�, and g��y� is its derivative with respect to y.

The algorithm of the previous equations estimates just one
of the independent components. To estimate several indepen-
dent components, we need to run the one-unit FastICA algo-
rithm using several units �e.g., neurons� with weight vectors
w1 , . . . ,wn. To prevent different vectors from converging to
the same maximum we must decorrelate the outputs
w1

Tx , . . . ,wn
Tx after each iteration. In specific applications it

may be desired to use a symmetric decorrelation in which

FIG. 3. Separation of mixtures of three self-sustained oscillators and Gaussian noise: �a� representation of the Andronov oscillator in the
phase space; �b� source signals and their spectra; �c� mixed signals and their spectra; �d� extracted signals and relative spectra.
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vectors are not privileged over the others. This can be ac-
complished by the classical method involving matrix square
roots.

III. DYNAMICAL SYSTEMS

We consider many types of DSs: linear, piecewise linear,
and nonlinear in the regime of limit cycle, chaotic, and sto-
chastic systems, taking into account both DSs with few and
infinite degrees of freedom. We have selected these systems
both because they are frequently used to describe natural
phenomena and because they are inserted in a well consoli-
dated and consistent theoretical framework.

In general, linear or nonlinear systems are described by a
set of first order differential equations:

dx�t�
dt

= F„x�t�… �6�

where F(x�t�� is a linear or nonlinear field.
The DSs with infinite degrees of freedom that we consider

are described by the following Ito equation:

FIG. 4. Separation of mixtures of two coupled Andronov oscillators, one Andronov oscillator, and Gaussian noise: �a� source signals; �b�
mixed signals; �c� extracted signals; and �d� distribution function and autocorrelation of source and extracted noise.
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dx = �v�x,t��dt + �dW , �7�

where v�x , t� is a field �drift� and dW is the Wiener process.
Now we give a detailed description of the different systems
and of the associated experiments.

A. Linear dynamical systems

The linear systems that we consider are single and
coupled harmonic oscillators. It is enough to consider two
coupled oscillators because the behavior of a system with
many oscillators is completely equivalent to that with two
coupled ones. We remark that the harmonic oscillator is the
paradigm of the linearity and describes all physical systems
in the weak coupling limit, when perturbation theory is ap-
plicable.

The system of differential equations that describes the
motion law of coupled oscillators is well-known. The solu-
tion is every linear superposition of the normal modes, de-

pending on initial conditions. Let us describe the results ob-
tained applying ICA to these systems.

1. Experimental results: Linear systems

We have made different experiments to show:
�1� the separation of two harmonic oscillators and addi-

tive Gaussian noise;
�2� the separation of two coupled oscillators in beat re-

gime and a Gaussian noise; and
�3� the performance of ICA to separate these kinds of

signals.
We remark that in all the cases we use a random matrix

with a uniform distribution in the range �0,1� to obtain the
mixtures of the signals. In the first experiment, the frequen-
cies �f� of the oscillators are 0.1 and 0.2 Hz, respectively,
and the sampling frequency �fs� is 100 Hz.

In Figs. 1�a�–1�c�, the source signals, the mixtures, and
the ICA extracted signals are reported together with the rela-

FIG. 5. Frequency estimation: evaluation of
the performance of the ICA to separate an An-
dronov oscillator from Gaussian noise.

FIG. 6. Separation of limit cycles wave forms from a linear combination of two Van der Pol oscillators: �a� source signals and their
spectra; and �b� extracted signals and their spectra.
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tive spectra. As it can be seen, the separation is optimal, i.e.,
the correlation coefficient between the original and the ex-
tracted signals is very high �about 0.98�.

In Fig. 1�d�, the performance of the ICA to separate a
harmonic oscillator from a Gaussian noise is shown. In this
case, we use a harmonic oscillator with frequency 0.12Hz
and we estimate the differences between the true frequency
and the estimated one �frequency error� by varying the
signal-to-noise ratio �SNR� from −100 to 20 db.

We compute the power spectrum density �PSD� for the
two mixtures and for the ICA extracted signals. The esti-
mated frequency corresponds to the maximum peak in the
PSD. It is possible to note that the ICA allows one to extract

the periodic signal with the proper frequency in time domain
from a noise with SNR lower than one achieved by applying
PSD on the mixtures �Fig. 1�d��.

In the second experiment, we consider coupled harmonic
oscillators in beat regime added to a Gaussian noise. In Fig.
2�a� the time evolution and the relative spectra are plotted.
Three different mixtures are shown in Fig. 2�b�. Applying
ICA, we obtain three extracted signals �Fig. 2�c��, in which
the two independent periodic signals are extracted from the
noise. We note that, analyzing the PSD of the mixed signals,
we do not have the estimated frequencies �Fig. 2�b��, instead
analyzing the PSD of the separated signals we obtain the
normal modes with frequencies 0.17 Hz and 0.19 Hz �Fig.

FIG. 7. Separation of signals from the mixtures of the three components of Lorenz oscillator and noise with uniform distribution: �a�
source signals; �b� mixed signals; �c� extracted signals.
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2�c��. The probability distribution and the autocorrelation in-
dicate that the source noise as well as the extracted one is
pure �Fig. 2�d��.

B. Piecewise linear dynamical systems

We have selected a particular piecewise linear oscillator:
the Andronov oscillator �12�. This is the simplest system that
generates, in a specific range of parameters, a dynamically
stable limit cycle, which is approached asymptotically by all
other phase paths. The equations of Andronov oscillator are

ẍ + 2h1ẋ + �0
2x = 0 if x � b ,

ẍ − 2h2ẋ + �0
2x = 0 if x � b , �8�

where b is the threshold which takes into account the non-
linearity of the system via a self-coupling. The analogical
system representing the Andronov oscillator is the valve os-
cillator with the oscillating circuit in the anode circuit and
inductive feedback. A simple realization is obtained by ne-
glecting the anode conductance and assuming a piecewise
linear approximation for the valve characteristic �sigmoid
characteristic� ia= ia�u�, where u is the grid voltage and ia is
the anode current.

FIG. 8. Separation of signals from the mixtures of the three components of Lorenz system and Gaussian noise: �a� source signals; �b�
mixed signals; �c� extracted signals.
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The equations are given in dimensionless variables x
=u /u0, where −u0 is the cutoff voltage, �0 is the natural
frequency of the circuit, and h1 and h2 are, respectively, the
dissipative and constructive parameters. The phase space is
divided by the straight line x=b into two different regions
identified by the two differential equations of the system �Eq.
�8�� �12�.

By using different parameters and thresholds, the An-
dronov oscillator has different behaviors. In fact, if the
threshold is negative �e.g., b=−1� we have a limit cycle only
if 0�h2�h1�1 otherwise forcing oscillations are installed,
while if the threshold is positive the system is basically dis-
sipative. In the following, we study also the system of two
weak linearly coupled Andronov oscillators.

Experimental results: Andronov oscillator

We select the following examples to illustrate the interest-
ing results by applying ICA to this system when generates
self-sustained oscillations:

�1� the separation of the Andronov oscillators and addi-
tive Gaussian noise;

�2� the separation of two coupled Andronov oscillators,
one Andronov oscillator, and a Gaussian noise; and

�3� the performance of ICA to separate these kinds of
signals.

We begin the analysis considering as source signals three
Andronov oscillators and Gaussian noise �Fig. 3�. In Fig.
3�a�, we show one of the three Andronov oscillators in the
phase space. The parameters h1=1.3, h2=1, and b=−1 are

FIG. 9. Separation of signals from the mixture of the three components of Rossler system and Gaussian noise: �a� source signals; �b�
mixed signals; �c� extracted signals; and �d� distribution function and autocorrelation of source and extracted noise.
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the same in all the experiments. The frequencies of the os-
cillators are 0.8 Hz, 0.9 Hz, and 1.1 Hz with a sampling fre-
quency of 125 Hz. Applying ICA, we obtain a good separa-
tion as reported in Fig. 3�d�, recovering the original self-
sustained oscillations.

In the second experiment, we consider the first piecewise
linear oscillator simply added to the others, which are
coupled to give a nonlinear beating regime. The system is
affected by Gaussian noise. In Figs. 4�a� and 4�b�, the source
signals and the mixtures are reported with the associated
spectra. Applying the ICA, we extract four separated signals
�Fig. 4�c��: the three independent self-sustained oscillations
�with the three different frequencies� and the added noise.
Also in this case, the probability distribution and the auto-
correlation, reported in Fig. 4�d�, indicate that the source
noise as well as the extracted one is pure.

In the third experiment, we show the performance of the
ICA to separate a self-sustained oscillation �Andronov oscil-
lator� by a Gaussian noise. In this case, we use an Andronov
oscillator with frequency 0.8 Hz and we estimate the differ-
ences between the true frequency and the estimate one vary-
ing the SNR from −100 to 20 db. As in the linear case, ICA
identifies the true frequency at a lower SNR than PSD �Fig.
5�.

In conclusion, linearly coupled Andronov oscillators
�piecewise linear oscillators� are well separated by ICA both
among them and from superimposed noise. These experi-
ments show the power of ICA that is able, as in the linear
case with regards the normal modes, to extract the indepen-
dent self-oscillations in time domain.

C. Nonlinear dynamical systems in limit cycle regime

We have selected a particular nonlinear dynamical sys-
tem: the Van der Pol oscillator �see, for example �13��. This

system, under certain conditions, undergoes a limit cycle re-
gime. The equation that describes this system is

ẍ + b�x2 − 1�ẋ + �0
2x = 0, �9�

where �0 is the frequency and b is a constant that affects
how nonlinear the system is. For b equal to zero, the system
is actually just a linear oscillator. As b grows the nonlinearity
becomes impossible to ignore.

1. Experimental results: Van der Pol oscillator

The aim is to show that by ICA it is possible to extract the
original wave forms in time domain, corresponding to the
limit cycle regime, from weakly coupled Van der Pol sys-
tems.

In this experiment the parameter b is equal to 0.3 and the
frequencies of the oscillators are 1.1 and 1.2 Hz with a sam-
pling frequency of 125 Hz.

In Fig. 6�a�, we report the source signals �nonlinear beat-
ing regime�, while in Fig. 6�b�, the independent signals are
separated. We stress that it is not trivial because the nonlinear
differential equations cannot be solved and fast fourier trans-
form �FFT�, due to the nonlinearity of the problem, looses its
efficacy.

D. Chaotic dynamical systems

The studied chaotic systems are the Lorenz oscillator and
the Rossler system �14�. The Lorenz oscillator was discov-
ered by Lorenz in 1963 as a very simplified model of con-
vection rolls in the upper atmosphere. Lorenz found that the
trajectories of this system, for certain settings, do not diverge
to infinity, and never settle down to a fixed point or to a
stable limit cycle. The trajectories, instead, in the phase

FIG. 10. Power spectrum den-
sity: �a� a generic story of stochas-
tic process described by Eq. �12�;
and �b� z�t� described by Eq. �13�.
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space, have a complex form: in this way Lorenz introduced
the strange attractor and the concept of chaos. The Lorenz’s
system can be cast in the following form:

ẋ = − ��x − y� ,

ẏ = − xz + rx − y ,

ż = xy − bz , �10�

with �, r, and b adimensional parameters.

Another example of deterministic chaos is the system pro-
posed by Rossler. It arose from some works in chemical
kinetics. The system is described by three coupled nonlinear
differential equations:

ẋ = − y − z ,

ẏ = x + ay ,

ż = b + z�x − c� , �11�

with a, b, and c adimensional parameters.

FIG. 11. Separation of the mixture of a signal generated by Eq. �13� �with � equal to 0.003 Hz�, an additive Gaussian noise, and a signal
described by Eq. �12� with the same resonance frequency: �a� source signals; �b� mixed signals; and �c� extracted components.
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Experimental results: Lorenz oscillator and Rossler system

In this case we analyze, in detail, some representative
examples to show:

�1� the separation of the three components of Lorenz os-
cillator and noise with uniform distribution;

�2� the separation of the three components of Lorenz os-
cillator and a Gaussian noise; and

�3� the separation of the three components of Rossler sys-
tem and Gaussian noise.

We use this set of parameters for Lorenz system: �=10,
r=28, and b= 8

3 . In the first experiment �Fig. 7�, ICA has
extracted, in an optimal way, the components of Lorenz os-

cillator and the noise. If we also add one harmonic oscillator
and one Andronov oscillator, the ICA separates all the in-
volved DSs in a very good way.

The separation is not perfect when we consider mixtures
of the components of Lorenz oscillator with Gaussian noise
�Fig. 8�. In this particular case, the recognition of the com-
ponent z of the Lorenz oscillator is impossible because the
component has a distribution very similar to a Gaussian dis-
tribution introducing the intrinsic ambiguities of ICA �two
Gaussian variables are forbidden� �1�.

Instead, in the case of the Rossler system �a=0.15, b
=0.2, and c=10� the separation of three components and
Gaussian noise is excellent as you can see in Fig. 9. The

FIG. 12. Separation of the mixture of two signals in stochastic resonance regime and Gaussian noise: �a� source signals; �b� mixed
signals; �c� extracted signals.
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distribution function and autocorrelation of source and ex-
tracted noise in Fig. 9�d� show that nothing of spurious is
present in the extracted noise, which is a white Gaussian
noise.

E. Stochastic systems

The fourth class of systems that we describe is that of
diffusive systems in the regime of stochastic resonance.
Since its introduction �15�, stochastic resonance has become
very popular in many fields of natural science. The term is
given to a phenomenon that is manifest in nonlinear systems.
Although in the recent literature the notion of stochastic
resonance gained broader significance, the archetype of sys-
tem that can rule stochastic resonance regime is represented
by a simple symmetric bistable potential �double-well�
driven by both an additive random noise, i.e., white and
Gaussian, and an external periodic bias. Given these features,
the response of the system undergoes resonancelike behavior
as a function of the noise level and of the parameters �15�;
hence the name stochastic resonance �16�. Formally, we con-
sider the Langevin equation with a small periodic forcing:

dx = �x�a − x2� + A cos��t��dt + �dW , �12�

where W is a Wiener process, i.e., a Gaussian process with
zero mean and unitary variance; x is a not dimensional vari-
able; A is the amplitude; and � the angular frequency of the
external periodical forcing.

We select this system because its Fourier transform is
characterized by a well defined peak at the resonance fre-
quency, see Fig. 10�a�.

In our experiments we analyze this kind of systems and
we also make a comparison with another that can display a
similar frequency content. The latter system, denoted as z�t�,
is described by the following equations:

s̈ = − �2s ,

dy = �dW ,

z�t� = As�t� + By�t� , �13�

where the first equation is a simple harmonic oscillator with
angular frequency �; the second equation is a genuine
Wiener process; and the third equation is the superposition of
the two, according to the coefficient A, B. Choosing � equal
to the resonance frequency of the system described by Eq.
�12�, we obtain that z�t� has a similar frequency content as
x�t� �see Fig. 10�b��.

Experimental results: Diffusive systems in stochastic resonance
regime

We made many experiments with this kind of system,
here we want to show two very interesting results:

�1� the separation of a mixture of a periodic signal with
Gaussian noise and a generic story from a diffusive process
in stochastic resonance regime; and

�2� the separation of two generic stories from diffusive
processes in stochastic resonance regime with different reso-
nance frequencies and a Gaussian noise.

We begin our analysis just considering the performance of
ICA in two cases with FFT seemingly similar but very dif-
ferent, namely a mixture of periodic signal and Gaussian
noise, i.e., Eq. �13�, and a generic evolution in the stochastic
regime described by Eq. �12�.

As we can see in Fig. 11, the separation is optimal; ICA
recognizes low-dimensional and high-dimensional systems,
i.e., harmonic oscillator and both the diffusive process in
stochastic resonance regime and Gaussian noise, also in the
presence of a similar frequency content. We should note that
linear methods based on FFT fail because they do not distin-
guish the real number of degrees of the system underlying
our mixtures, describing the observed spectra as due to the
same DS. In that framework, a system with a stochastic reso-
nance like behavior is not at all different from a simple os-
cillator with noise.

In the second experiment, we consider the mixtures of
systems in stochastic resonance regime and Gaussian noise
�Figs. 12�a� and 12�b��. The relative resonance frequencies
are 10−3 and 0.5�10−3 Hz with a sampling frequency of

1
0.3 Hz. As a result we obtain similar signals as input
�Fig. 12�c��.

The previous results have two important consequences:
�1� ICA recognizes from the mixtures the two different reso-
nancelike behaviors; and �2� it is not possible to extract the
part of intrinsic noise present in Eq. �12� since it is dynami-
cally superposed.

Summarizing these experiments are very impressive be-
cause they assure that, if we have real signals, which are
linear superposition of linear, nonlinear, and stochastic pro-
cesses, ICA is able to identify them, giving to us their wave
forms in time domain and a very clear indication about the
complexity of the dynamical systems involved in our data.
This is extremely important when we want to construct any
physical model to explain the observed phenomenon.

IV. CONCLUSIONS

Now we can draw our conclusions. We have applied ICA
to very representative dynamical systems; first to linear and
nonlinear systems with few degrees of freedom, and then to
infinite degrees of freedom systems, namely, diffusion pro-
cesses in the regime of stochastic resonance.

Regarding the linear systems, we obtained very good
separation from very high superimposed noise, with SNR
ranging from −100 db to 20 db. Furthermore, the ICA acts
as a fast Fourier transform but in time domain, in separating
coupled oscillators, since it gives us the normal modes of the
system. It is remarkable that it is not simple to extract peri-
odic system from noise and that if we consider the case of
coupled oscillators when the frequencies are commensurable,
standard methods as, for example, Grassberger and Procaccia
analysis are not able to individuate the right phase-space di-
mensions �degrees of freedom�. ICA solves the first problem
extracting a periodic signal from a noise with an amplitude
1000 times higher and the second one giving the normal
modes that represent the real degrees of freedom of the sys-
tem. The performance of ICA is valuable also in the case of
piecewise linear systems: in this case we separate coupled
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Andronov oscillators that are highly nontrivial self-coupled
dynamical systems. Also in these experiments the separation
from noise is well made.

Going to full nonlinear systems, we consider the case of
the Van der Pol oscillator generating limit cycles and we
obtain the extractions of limit cycle wave forms in time do-
main. In the case, then, of chaotic DSs, the ICA gives good
separations affirming, clearly, to be a technique able to iden-
tify any type of DS independently from its complexity. We
note that the perfomance of ICA in these two last cases loses
its efficacy at lower SNR than in the linear cases.

The experiments with stochastic resonance are very

impressive: the superimposed periodic and stochastic
signals are completely separated, i.e., ICA perfectly
recognizes the different superimposed dynamical
systems also when the Fourier transform is irresolute �insen-
sitive�. As a conclusive remark we can say that ICA is a very
good method of preanalysis for scalar series, namely it al-
lows one to recognize if the scalar series contain one or more
independent dynamical systems. The results contained in this
paper are the abstract generalization of our efforts in apply-
ing ICA to a lot of natural physical systems, i.e., organ pipes
�17�, atmospheric environment �4�, and volcanic systems
�2,3,5�.
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